

# **CAR-T in NHL: Other products and next generation CAR-T** Stephen J. Schuster, M.D.

University of Pennsylvania, Philadelphia, PA, USA

Rome, March 16-17 2023

Donna Camilla Savelli Hotel

President: P.L. Zinzani



#### **Disclosures**

#### **Disclosures of Prof. Stephen J. Schuster**

| Company name         | Research<br>support | Employee | Consultant | Stockholder | Speakers<br>bureau | Advisory<br>board | Other                      |
|----------------------|---------------------|----------|------------|-------------|--------------------|-------------------|----------------------------|
| AbbVie               |                     |          |            |             |                    | Х                 |                            |
| AstraZeneca          |                     |          |            |             |                    | х                 |                            |
| BeiGene              |                     |          |            |             |                    | х                 |                            |
| Caribou Biotech      |                     |          |            |             |                    | х                 | Steering committee         |
| Fate Therapeutics    |                     |          |            |             |                    |                   | Safety DSMB                |
| Genentech/Roche      | x                   |          |            |             |                    | Х                 | Steering committee         |
| Genmab               | X                   |          |            |             |                    | Х                 | Steering committee         |
| Incyte/Morphosys     |                     |          |            |             |                    | х                 | Honoraria for presentation |
| Kite Pharmaceuticals |                     |          |            |             |                    | Х                 |                            |
| Legend Biotech       |                     |          |            |             |                    | Х                 | Steering committee         |
| Novartis             |                     |          |            |             |                    | х                 | Steering committee         |
| Mustang Biotech      |                     |          |            |             |                    | х                 |                            |
| Nordic Nanovector    |                     |          |            |             |                    | Х                 | Steering committee         |
| Takeda               |                     |          |            |             |                    |                   | Honoraria for presentation |



## **CAR-T** saves lives but there is room for improvement



#### ZUMA-1 Trial<sup>1</sup>

n = 101

Median follow-up: 63.1 months Best ORR: 83%, CR: 58% 5-year PFS: 31.8% (95% CI: 22.9-41.1)

<sup>1</sup>*adapted from* Neelapu SS, et al. Blood. 2023; Epub ahead of print.

3



#### Ibrutinib Before Apheresis May Improve Tisagenlecleucel Manufacturing in Relapsed/Refractory Large B-Cell Lymphomas: a Phase 1b Study

7<sup>th</sup> POSTGRADUATE

#### Julio C. Chavez,<sup>1</sup> Frederick L. Locke,<sup>2</sup> Ellen Napier,<sup>3,4</sup> Carl Simon,<sup>5</sup> Andrew Lewandowski,<sup>5</sup> Rakesh Awasthi,<sup>6</sup> Boris Engels,<sup>5</sup> Petrina Georgala,<sup>7</sup> Attilio Bondanza,<sup>8</sup> Stephen J. Schuster <sup>4</sup>

<sup>1</sup>Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL; <sup>2</sup>Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL; <sup>3</sup>Clinical Research Unit, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; <sup>4</sup>Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; <sup>5</sup>Novartis Institutes for BioMedical Research, Cambridge, MA; <sup>6</sup>Novartis Institutes for BioMedical Research, East Hanover, NJ; <sup>7</sup>Novartis Pharmaceuticals Corporation, East Hanover, NJ; <sup>8</sup>Novartis Institutes for BioMedical Research, Basel, Switzerland

#### Rome, March 16-17 2023

#### Ibrutinib, a BTK inhibitor, may improve CAR-T cell manufacturing, in vivo cellular kinetics, and antitumor efficacy

7<sup>th</sup> POSTGRADUATE

| • Ibrutinib is a clinically viable<br>irreversible ITK inhibitor <sup>1</sup> |
|-------------------------------------------------------------------------------|
| • Ibrutinib inhibits the formation of Th2                                     |
| but not The Immunity-                                                         |
|                                                                               |
|                                                                               |
| Ibrutinib treatment of CLL enhances     the generation of CAR-T cells for     |
| adoptive immunotherapy <sup>2</sup>                                           |
| • Concurrent ibrutinib therapy<br>improves the engraftment and                |
| therapeutic efficacy of anti-CD19 CAF                                         |
|                                                                               |
|                                                                               |

<sup>1</sup>Dubovsky, et al. Blood. 2013;122:2539-2549; <sup>2</sup>Fraietta, et al. Blood. 2016;127(9):1117-1127.

## **Ibrutinib Improves T Cell Number and Function in CLL**

#### CLINICAL MEDICINE

7th POSTGRADUATE

The Journal of Clinical Investigation

#### Ibrutinib treatment improves T cell number and function in CLL patients

Meixiao Long, <sup>12</sup> Kyle Beckwith, <sup>123</sup> Priscilla Do, <sup>123</sup> Bethany L. Mundy, <sup>12</sup> Amber Gordon, <sup>12</sup> Amy M. Lehman, <sup>24</sup> Kami J. Maddocks, <sup>12</sup> Carolyn Cheney, <sup>2</sup> Jeffrey A. Jones, <sup>12</sup> Joseph M. Flynn, <sup>1</sup> Leslie A. Andritsos, <sup>12</sup> Farrukh Awan, <sup>12</sup> Joseph A. Fraietta, <sup>5</sup> Carl H. June, <sup>5</sup> Marcela V. Maus, <sup>6</sup> Jennifer A. Woyach, <sup>12</sup> Michael A. Caligiuri, <sup>12</sup> Amy J. Johnson, <sup>12</sup> Natarajan Muthusamy, <sup>12</sup> and John C. Byrd<sup>12</sup>

#### Ibrutinib treatment:

- increases in vivo persistence of activated CD4+ and CD8+ T cells, via diminished activationinduced cell death through ITK inhibition
- decreases the Treg/CD4+ T cell ratio
- diminishes the immune-suppressive properties of CLL cells through BTK-independent and BTKdependent mechanisms:
  - 1. decreased PD-1 expression by T cells
  - 2. decreased CTLA-4 expression by T cells
  - 3. decreased CD200 (OX-2) expression by CLL cells
  - 4. decreased BTLA expression by CLL cells
  - 5. decreased IL-10 production by CLL cells



## **Ibrutinib Improves T Cell Number and Function in CLL**

7<sup>th</sup> POSTGRADUATE

| T Cells       |        |         |              |              |          | CLL     | Cells         |       |          |                 |
|---------------|--------|---------|--------------|--------------|----------|---------|---------------|-------|----------|-----------------|
|               | CD4#   | CD8#    | PD-1         | CTLA-4       | Treg:CD4 | Th17#   |               | CD200 | BTLA     | IL10 production |
| ibrutinib     | Ŷ      | ↑       | $\downarrow$ | Ļ            | Ļ        | Ť       | lbrutinib     | Ļ     | Ļ        | Ļ               |
| acalabrutinib | -      | -       | ↓            | $\downarrow$ | -        | -       | acalabrutinib | Ļ     | ↓        | Ļ               |
| МОА           | ITK me | ediated | Indirect     | via BTKi     | Inc. CD4 | Non-BTK | MOA           |       | BTKi-dep | pendent         |

Fraietta, et al. Blood. 2016; 127:1117-1127; Dubovsky, et al. Blood. 2013;122:2539-2549; Long, et al. J Clin Invest. 2017;127:3052-3064.

## **Functional T Cell Subsets May Determine CAR T Cell Responses**

7<sup>th</sup> POSTGRADUATE

#### • CAR T expansion kinetics and response in CLL patients



CR, complete remission; PR<sub>TD</sub>, partial remission with late relapse of transformed disease; PR, partial response; NR, no response

Rome,

March 16-17 2023

## Functional T Cell Subsets May Determine CAR T Cell Responses

• Genomic and phenotypic evaluation of CLL patient-derived CAR T cells

Change in expression of T cell-activation gene set signatures in pre-infusion CAR-T cells from CR and non-CR patients Change in pSTAT3 levels of pre-infusion CAR-T cells from CR and non-CR patients

Rome.

March 16-17 2023





ightarrow Responders upregulate memory-related gene and IL-6/STAT3 signatures

→ Non-responders upregulate programs involved in effector T cell differentiation, glycolysis, exhaustion and apoptosis

Fraietta, et al. Nat Med 2018; 24:563–571.

7<sup>th</sup> POSTGRADUATE

#### Rome, March 16-17 2023

## **Functional T Cell Subsets May Determine CAR T Cell Responses**

#### • Genomic evaluation of CLL patient-derived CAR T cells

#### Genes Significantly Up- or Down-regulated Early memory T cell

7<sup>th</sup> POSTGRADUATE

Nonexhausted T cell Naive vs. activated T<sub>H</sub>2 Cd4<sup>+</sup> T cell Unstimulated vs. stimulated memory T cell Resting vs. bystander activated CD4<sup>+</sup> T cel Conventional vs. effector memory T cell Multipotent vs. progenitor CD4<sup>+</sup> T cell Memory vs. effector CD8<sup>+</sup> T cell Exhausted vs. effector T cell Exhausted T cell Activated T<sub>H</sub>2 vs. naive CD4<sup>+</sup> T cell Stimulated vs. unstimulated memory T cell Glycolysis Hypoxia Effector vs. memory CD8<sup>+</sup> T cell Apoptosis

Early P = 0.0343P = 0.0213Memory memory 100 60 40 50 Gene set score Gene set score 20 0 0 -50 -20 -100 -40Late Effector -60 -150memory CR/PRTD PR/NR CR/PRTD PR/NR P = 0.0002P = 0.0064Glycolysis Exhaustion 100 100 high high set score 50 50 Gene set score 0 0 Gene : -50 -50Glycolysis -100 Exhaustion -100 low low CR/PRTD PR/NR CR/PRTD PR/NR

CR, complete remission; PR<sub>TD</sub>, partial remission with late relapse of transformed disease; PR, partial response; NR, no response

Fraietta, et al. Nat Med 2018; 24:563–571.



#### Ibrutinib Before Apheresis May Improve Tisagenlecleucel Manufacturing in Relapsed/Refractory Large B-Cell Lymphomas: a Phase 1b Study

#### **Objectives**

7<sup>th</sup> POSTGRADUATE

- To assess the safety, tolerability, and antitumor activity of tisagenlecleucel in combination with ibrutinib in adult patients with r/r DLBCL
- To describe the T-cell immunophenotype and functional activity of the leukapheresis and final tisagenlecleucel product in patients who had initiated ibrutinib *prior to* or *post* apheresis, arm 1 and arm 2, respectively

#### Study Design: Phase Ib, Multicenter, Nonrandomized, Open-Label

Patients With r/r DLBCL ≥18 years old ≥2 prior lines of therapy, including anti-CD20 and an anthracycline Relapsed after or ineligible for autoSCT Patients who received prior anti-CD19, prior alloSCT, ibrutinib within 30 days prior to screening, or had active CNS involvement were excluded

ClinicalTrials.gov Identifier: NCT03876028

7<sup>th</sup> POSTGRADUATE



lbrutinib was continued throughout lymphodepleting chemotherapy, tisagenlecleucel infusion, and post infusion for up to 24 months in both arms.<sup>c</sup>

| Primary Endpoints:                                                                   |  |  |  |
|--------------------------------------------------------------------------------------|--|--|--|
| Incidence and severity of adverse events, ibrutinib dose interruptions/modifications |  |  |  |
| Secondary Endpoints Include:                                                         |  |  |  |
| BOR per Lugano, progression-free survival                                            |  |  |  |

<sup>A</sup> Patients in Arm 1 were enrolled after completion of enrollment of Arm 2. <sup>b</sup> Lymphodepleting chemotherapy, ending at least 2 days before tisagenlecleucel infusion, was either fludarabine (25 mg/m<sup>2</sup>) and cyclophosphamide (250 mg/m<sup>2</sup>) daily for 3 days or bendamustine (90 mg/m<sup>2</sup>) daily for 2 days. <sup>C</sup> Patients in complete response at 12 months post infusion were discontinued from ibrutinib.

alloSCT, allogeneic stem cell transplant; autoSCT, autologous stem cell transplant; BOR, best overall response; CAR, chimeric antigen receptor; CD, cluster of differentiation; CNS, central nervous system; DLBCL, diffuse large B-cell lymphoma; r/r, relapsed or refractory.

#### **Patient Demographics and Baseline Clinical Characteristics**

7th POSTGRADUATE

|                                        | Arm 1 (N=4)   | Arm 2 (N=6)   |
|----------------------------------------|---------------|---------------|
| Age, median, (range)                   | 59 (32-67)    | 64 (58-76)    |
| Sex                                    |               |               |
| Male/female                            | 4 (100)/0     | 4 (67)/2 (33) |
| ECOG performance status                |               |               |
| 0/1                                    | 3 (75)/1 (25) | 1 (17)/5 (83) |
| Lines of prior therapy                 |               |               |
| 2                                      | 2 (50)        | 4 (67)        |
| 3                                      | 0             | 2 (33)        |
| 4-6                                    | 2 (50)        | 0             |
| Cells of origin of cancer              |               |               |
| Germinal center B-cell type            | 2 (50)        | 4 (67)        |
| Activated B-cell type                  | 1 (25)        | 2 (33)        |
| T-cell/histiocyte-rich                 | 1 (25)        | 0             |
| Disease stage at study entry           |               |               |
| Stage I                                | 0             | 0             |
| Stage II                               | 2 (50)        | 0             |
| Stage III                              | 2 (50)        | 0             |
| Stage IV                               | 0             | 6 (100)       |
| Previous autologous HSCT               | 1 (25)        | 2 (33)        |
| LDH at screening (U/L), median (range) | 198 (146-234) | 217 (178-303) |

#### As of September 14, 2020, 10 patients had been treated and observed through at least the Month 3 assessment



## **Efficacy and Safety Outcomes**

|        | Patient No. | DLBCL Subtype | Bridging<br>(Yes or No) | CAR-T Cell Dose<br>(×10 <sup>8</sup> ) | CRS,<br>Gradeª | ICANS,<br>Gradeª | BOR (Assessment) <sup>ь</sup> | PFS,<br>Median (95% CI) |
|--------|-------------|---------------|-------------------------|----------------------------------------|----------------|------------------|-------------------------------|-------------------------|
|        | 1           | ABC           | No                      | 3.4                                    | 1              | 0                | CR (Month 6)                  |                         |
| Armo 4 | 2           | TCHR          | No                      | 3.6                                    | 0              | 0                | CR (Month 6)                  | NE                      |
| Arm 1  | 3           | GCB           | No                      | 4.1                                    | 0              | 0                | PR (Day 28)                   | (NE-NE)                 |
|        | 4           | GCB           | No                      | 4.6                                    | 0              | 0                | CR* (Month 3)                 |                         |
|        | 5           | ABC           | No                      | 2.2                                    | 1              | 0                | CR (Month 12)                 |                         |
|        | 6           | GCB           | No                      | 1.6                                    | 0              | 0                | PD (Day 28)                   |                         |
|        | 7           | GCB           | No                      | 1.2                                    | 1              | 0                | PD (Day 28)                   | 2.5 months              |
| Arm 2  | 8           | GCB           | No                      | 1.4                                    | 1              | 1                | PD (Day 28)                   | (1.0-NE)                |
|        | 9           | GCB           | Yes (rituximab)         | 1.9                                    | 1              | 0                | PD (Month 2)                  |                         |
|        | 10          | ABC           | No                      | 3.0                                    | 1              | 0                | CR* (Month 6)                 |                         |

- Six of 10 patients (60%) across both treatment arms had grade 1 CRS; no other instances of CRS were observed, and no patients required tocilizumab or were admitted to the intensive care unit
- One patient in Arm 2 (17%) had grade 1 ICANS; no other instances of ICANS were reported
- Three of 4 patients (75%) in Arm 1 and 2 of 6 patients (33%) in Arm 2 achieved a BOR of CR
  - \*Two patients responded to ibrutinib alone: Patient No. 4 in Arm 1 and patient No. 10 in Arm 2



#### **Summary of CAR-T Treatment-Emergent AEs**

7<sup>th</sup> POSTGRADUATE



- One patient in Arm 2 (17%) had grade 3 neutropenia lasting >28 days post tisagenlecleucel infusion; no other patients had grade 3 or 4 neutropenia or thrombocytopenia lasting >28 days
- Ibrutinib-related bradycardia and atrial fibrillation (both grade 2) were each observed in 1 patient in Arm 1<sup>a</sup>; supraventricular tachycardia (grade 1) related to tisagenlecleucel was observed in 1 patient in Arm 2. One patient in Arm 1 with low platelet levels at baseline (grade 1) had a decrease in platelet count (grade 2) related to ibrutinib. No major bleeding events were observed

<sup>a</sup> Ibrutinib was discontinued in the patient with bradycardia and was dose-reduced to 140 mg/day in the patient with atrial fibrillation.





- Arm 1 was associated with higher total CAR+ manufactured cells and higher viability of the final product compared with Arm 2
- The median dose of tisagenlecleucel infused was moderately higher in Arm 1 compared with Arm 2: 3.9 (range, 3.4-4.6) vs 1.7 (range, 1.2-3.0) × 10<sup>8</sup> CAR+ viable T cells, respectively
- FP, final product

7<sup>th</sup> POSTGRADUATE

Rome,

March 16-17 2023

## **Impact of Ibrutinib on T-Cell Phenotype in Apheresis Product**



• Arm 1 was associated with an increased percentage of naïve/T<sub>SCM</sub> cells in the leukapheresis material compared with Arm 2

 Arm 1 was associated with a final product characterized by preserved production of IFNγ (effector cytokine considered as a biomarker for potency) and increased production of IL-2 (proliferative cytokine considered a marker of self-renewal) upon antigen-specific stimulation

Data pertaining to IFNy and IL-2 release are normalized to a non-CD19-expressing cell line: K562 meso cells.

CD, cluster of differentiation; CM, central memory (CD45RA-/CCR7+); N+T<sub>SCM</sub>, naïve/stem cell-like central memory (CD45RA+/CCR7+); IFNy, interferon gamma; IL, interleukin;

LKPK, leukapheresis starting material; TDN, transduced number

7th POSTGRADUATE

Rome.

March 16-17 2023



# **Conclusions**

- These results support the feasibility of administering ibrutinib to patients with DLBCL throughout tisagenlecleucel therapy
- Ibrutinib may improve CAR-T cell manufacturing when given prior to apheresis: T-cell phenotype and function were associated with less differentiated cells and preserved production of IFNγ and IL-2.
   Further studies are needed to confirm these findings
- An increased safety risk was not observed in patients who were administered ibrutinib prior to apheresis
- Results from patients administered ibrutinib prior to apheresis are promising. However, efficacy
  claims are limited by the small, non-randomized nature of this study. Further studies will be needed
  to characterize the impact of ibrutinib pre-treatment in patients with DLBCL

## Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18

# Biliang Hu, Carl June, et al., created IL-18-secreting CAR T cells (IL-18-CAR T) to significantly boost CAR T cell proliferation and antitumor activity.

Preclinical studies showed:

7<sup>th</sup> POSTGRADUATE

- Robust enhancement of proliferation of IL-18-secreting human T cells in a xenograft model, which was dependent on TCR and IL-18R signaling.
- IL-18 augmented IFN- $\gamma$  secretion and proliferation of T cells activated by the endogenous TCR.
- In a xenograft model, TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited significantly enhanced CAR T cell proliferation and antitumor activity.





Rome, March 16-17 2023

#### - a Phase 1 UPenn Study

• IL-18 is a pro-inflammatory cytokine shown to enhance<sup>1</sup>

- CAR T-cell proliferative potency

- Anti-tumor activity

7<sup>th</sup> POSTGRADUATE

- huCART19-IL18 is a 4th generation autologous CAR T-cell product transduced by lentiviral vector to co-express humanized anti-CD19 CAR and human IL-18; 3-day manufacturing
- First-in-human trial using huCART19-IL18 in patients with relapsed/refractory B-cell non-Hodgkin lymphomas and CLL (NCT04684563)



• used a Bayesian optimal interval dose titration design exploring doses between 3 and 300 million huCART19-IL18 cells per patient



#### - Patient characteristics, prior CAR-T treatment, and protocol therapy

| PATIENT CHARACTERISTICS (N=8) |                |  |  |
|-------------------------------|----------------|--|--|
| Median age (range)            | 65 yrs (56-75) |  |  |
| Diagnosis                     |                |  |  |
| DLBCL                         | 3              |  |  |
| MCL                           | 2              |  |  |
| THRBCL                        | 1              |  |  |
| HGBL                          | 1              |  |  |
| FL                            | 1              |  |  |
| p53 mutation by NGS*          | 3 (50%)*       |  |  |
| Median prior Rx (range)       | 6.5 (4-13)     |  |  |

7th POSTGRADUATE

\* p53 status available in 6 patients

| PRIOR CAR T-CELLS (N=7**)    |         |  |  |  |
|------------------------------|---------|--|--|--|
| Axi-cel                      | 3       |  |  |  |
| Tisa-cel                     | 3       |  |  |  |
| Brexu-cel                    | 1       |  |  |  |
| Best response to prior CAR-T |         |  |  |  |
| CR                           | 3 (43%) |  |  |  |
| PR                           | 1 (14%) |  |  |  |
| PD                           | 3 (43%) |  |  |  |
|                              |         |  |  |  |

\*\* 1 patient failed manufacturing for brexu-cel twice and was deemed eligible for huCART19-IL18 without prior commercial CAR T-cell

| ON-STUDY THERAPIES (N=8)       |         |  |  |  |
|--------------------------------|---------|--|--|--|
| Systemic bridging Rx           | 7 (88%) |  |  |  |
| Radiation                      | 5 (63%) |  |  |  |
| LD chemotherapy (bendamustine) | 7 (88%) |  |  |  |

| DOSE | LEVELS ADMINISTERED (                 | N=8) |
|------|---------------------------------------|------|
| DL1A | 3x10 <sup>6</sup> cells (no LD chemo) | 1    |
| DL1B | 3x10 <sup>6</sup> cells               | 2    |
| DL2  | 7x10 <sup>6</sup> cells               | 2    |
| DL2* | 2.8x10 <sup>7</sup> cells             | 1    |
| DL3  | 3x10 <sup>7</sup> cells               | 2    |

\* 2 DL3 products did not meet the target dose but exceeded minimum infusible dose and patients were treated:

1 with DL2 (7x10<sup>6</sup> cells)

1 with dose between DL2 and DL3 (2.8x10<sup>7</sup> cells)

DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma; THRBCL, T-cell/histiocyte-rich large B-cell lymphoma; HGBCL, high-grade B-cell lymphoma; FL, follicular lymphoma

LD, lymphodepletion chemotherapy

#### - Safety (N=8) and efficacy (N=7)

| RELATED ADVERSE EVENTS OF SPECIAL INTEREST |            |           |  |  |
|--------------------------------------------|------------|-----------|--|--|
|                                            | CRS*       | NEURO     |  |  |
| Any grade                                  | 4 (50%)    | 2 (25%)   |  |  |
| Median onset (range) in days               | 7.5 (2-8)  | 14 (8-20) |  |  |
| Median duration (range) in days            | 5.5 (5-11) | 4 (2-6)   |  |  |
| Grade 1                                    | 2 (25%)    | 1 (13%)   |  |  |
| Grade 2                                    | 1 (13%)    | 1 (13%)   |  |  |
| Grade 3                                    | 1 (13%)    | 0         |  |  |

\*2 patients received tocilizumab

7<sup>th</sup> POSTGRADUATE

| RELATED NON-HEMATOLOGIC ADVERSE EVENTS ≥ GRADE 3 |         |  |  |  |
|--------------------------------------------------|---------|--|--|--|
| Total patients with G3/G4 AE                     | 3 (38%) |  |  |  |
| Infections                                       | 2 (25%) |  |  |  |
| Hypotension                                      | 2 (25%) |  |  |  |
| Pulmonary edema                                  | 1 (13%) |  |  |  |
| AST elevation                                    | 1 (13%) |  |  |  |
| Fibrinogen decreased                             | 1 (13%) |  |  |  |

#### No study-related deaths

| RESPONSE AT 3 MONTHS (N=7) |          |
|----------------------------|----------|
| Overall response rate      | 7 (100%) |
| Complete response          | 4 (57%)  |
| Partial response           | 3 (43%)  |
| 1 artial response          | 0 (40 /0 |



#### Patient with follicular lymphoma refractory to axi-cel



• Median follow-up is 8 months (1.9-14.1)

• All patients in CR at M3 (N=4) remain progression-free

Patients in PR at M3 (N=3): -01 was re-treated with huCART19-IL18 at M4 and achieved CR
 -04 was taken off study in PR to pursue alternative therapy
 -05 progressed at M5 with CD19<sup>-</sup> disease



- huCART19-IL18 expansion and persistence (N=8)



#### - Conclusions

• huCART19-IL18 has a manageable safety profile

7th POSTGRADUATE

- Expansion and persistence of huCART19-IL18 cells appear adequate
- Early efficacy is observed across dose levels in lymphoma patients previously refractory to or relapsing after commercial CAR T-cell products
- Enrollment continues



# Molte Grazie Questions & Comments

7<sup>th</sup> POSTGRADUATE